An Efficient Tensor Completion Method Combining Matrix Factorization and Smoothness
Author(s) -
Leiming Tang,
Xunjie Cao,
Weiyang Chen,
Changbo Ye
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/5515446
Subject(s) - computer science , smoothness , tensor (intrinsic definition) , matrix decomposition , factorization , matrix (chemical analysis) , algorithm , mathematics , pure mathematics , physics , mathematical analysis , eigenvalues and eigenvectors , materials science , quantum mechanics , composite material
In this paper, the low-complexity tensor completion (LTC) scheme is proposed to improve the efficiency of tensor completion. On one hand, the matrix factorization model is established for complexity reduction, which adopts the matrix factorization into the model of low-rank tensor completion. On the other hand, we introduce the smoothness by total variation regularization and framelet regularization to guarantee the completion performance. Accordingly, given the proposed smooth matrix factorization (SMF) model, an alternating direction method of multiple(ADMM-) based solution is further proposed to realize the efficient and effective tensor completion. Additionally, we employ a novel tensor initialization approach to accelerate convergence speed. Finally, simulation results are presented to confirm the system gain of the proposed LTC scheme in both efficiency and effectiveness.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom