z-logo
open-access-imgOpen Access
The Voltage Stabilizing Control Strategy of Off-Grid Microgrid Cluster Bus Based on Adaptive Genetic Fuzzy Double Closed-Loop Control
Author(s) -
Yu Zhang,
Hongwan Yang,
Peng Wang
Publication year - 2021
Publication title -
journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 25
eISSN - 2090-0155
pISSN - 2090-0147
DOI - 10.1155/2021/5515362
Subject(s) - control theory (sociology) , microgrid , fuzzy control system , fuzzy logic , robustness (evolution) , overshoot (microwave communication) , control system , matlab , computer science , voltage , engineering , control (management) , telecommunications , biochemistry , chemistry , artificial intelligence , electrical engineering , gene , operating system
In the off-grid microgrid cluster, the energy storage device is mainly charged and discharged to maintain the stability of the bus voltage and the system power balance. Generally, the voltage and current double closed-loop control and fuzzy control are adopted for the energy storage converter. *e traditional double closed-loop control parameters and the scale factor and quantization factor in fuzzy control cannot be adjusted in real time during system operation, resulting in slower dynamic response and weak anti-interference ability of the system. In response to the above problems, this paper proposes an adaptive genetic fuzzy double closed-loop control, which can adjust the PI control parameters in real time by adjusting the quantization factor and the scale factor to optimize the control effect. *e simulation platform is built in MATLAB/Simulink and the simulation results show that the adaptive genetic fuzzy double closed-loop control combines the advantages of fuzzy and PI control. Under different working conditions, the system has not only a fast dynamic response, small overshoot, and strong anti-interference ability but also good robustness.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom