Isogeometric Analysis for Active Control of Piezoelectric Functionally Graded Plates in Thermal Environment
Author(s) -
Tao Liu,
Ya-fen Jiang,
Shujun Li,
Qingyun Liu,
Chao Wang
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/5514476
Subject(s) - piezoelectricity , materials science , constitutive equation , bending , vibration , displacement (psychology) , thermal , piezoelectric sensor , structural engineering , piezoelectric coefficient , displacement field , vibration control , acoustics , composite material , finite element method , engineering , physics , psychology , meteorology , psychotherapist
An isogeometric analysis (IGA) method is proposed for investigating the active shape and vibration control of functionally graded plates (FGPs) with surface-bonded piezoelectric materials in a thermal environment. A simple first-order shear deformation theory (S-FSDT) with four variables is used to describe the displacement field of the plates. To ensure the investigation of smart piezoelectric structure in the thermal environment closer to the actual situation, a modified piezoelectric constitutive equation with consideration of the temperature effect of dielectric and piezoelectric strain coefficients is implemented to replace the traditional linear piezoelectric constitutive equation. Meanwhile, the neutral surface is adopted to avoid the stretching-bending coupling. The accuracy and effectiveness of the proposed S-FSDT-based IGA method are verified by comparing with several existing numerical examples. Then, the static bending and open-loop control of the plates under mechanical and thermal loads are further studied. Finally, the active control including static bending control and vibration control of piezoelectric functionally graded plates (PFGPs) is also investigated by using a displacement-velocity feedback control law.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom