z-logo
open-access-imgOpen Access
A Framework for Automatic Burn Image Segmentation and Burn Depth Diagnosis Using Deep Learning
Author(s) -
Hao Liu,
Keqiang Yue,
Siyi Cheng,
Wenjun Li,
Zhihui Fu
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/5514224
Subject(s) - segmentation , burn injury , artificial intelligence , computer science , deep learning , image segmentation , total body surface area , computer vision , medicine , surgery
Burn is a common traumatic disease with high morbidity and mortality. The treatment of burns requires accurate and reliable diagnosis of burn wounds and burn depth, which can save lives in some cases. However, due to the complexity of burn wounds, the early diagnosis of burns lacks accuracy and difference. Therefore, we use deep learning technology to automate and standardize burn diagnosis to reduce human errors and improve burn diagnosis. First, the burn dataset with detailed burn area segmentation and burn depth labelling is created. Then, an end-to-end framework based on deep learning method for advanced burn area segmentation and burn depth diagnosis is proposed. The framework is firstly used to segment the burn area in the burn images. On this basis, the calculation of the percentage of the burn area in the total body surface area (TBSA) can be realized by extending the network output structure and the labels of the burn dataset. Then, the framework is used to segment multiple burn depth areas. Finally, the network achieves the best result with IOU of 0.8467 for the segmentation of burn and no burn area. And for multiple burn depth areas segmentation, the best average IOU is 0.5144.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom