A Hybrid AOA and TDOA-Based Localization Method Using Only Two Stations
Author(s) -
Xiaolong Li,
Yi Xing,
Zhenkai Zhang
Publication year - 2021
Publication title -
international journal of antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.282
H-Index - 37
eISSN - 1687-5877
pISSN - 1687-5869
DOI - 10.1155/2021/5512395
Subject(s) - multilateration , cramér–rao bound , angle of arrival , computer science , time of arrival , upper and lower bounds , algorithm , wireless sensor network , non line of sight propagation , direction finding , radar , sonar , mathematical optimization , real time computing , wireless , mathematics , artificial intelligence , estimation theory , telecommunications , azimuth , antenna (radio) , mathematical analysis , computer network , geometry
Target localization plays an important role in the application of radar, sonar, and wireless sensor networks. In order to improve the localization performance using only two stations, a hybrid localization method based on angle of arrival (AOA) and time difference of arrival (TDOA) measurements is proposed in this paper. Firstly, the optimization model for localization based on AOA and TDOA are built, respectively, in the sensor network. Secondly,the majorization-minimization (MM) method is employed to create surrogate functions for solving the multiple objective optimization problem. Next, the hybrid localization problem is solved by the projected gradient decent (PGD) method. Finally, the Cramer–Rao lower bound (CRLB) for the joint AOA and TDOA method is derived for the comparison. Simulations proved that the proposed method has improved localization performance using AOA and TDOA measurements from only two base stations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom