z-logo
open-access-imgOpen Access
Experimental Study on the Coupled Heat-Moisture-Heavy Metal Pollutant Transfer Process in Soils
Author(s) -
Qingke Nie,
Wei Wang,
Wenkai Guo,
Huawei Li
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/5510217
Subject(s) - water content , soil water , moisture , adsorption , metal , pollutant , heat transfer , thermal conduction , materials science , chemistry , soil science , environmental science , thermodynamics , geotechnical engineering , composite material , geology , metallurgy , physics , organic chemistry
The coupled physical mechanism of heat conduction, moisture migration, and heavy metal transfer in a kaolin soil was studied by one-dimensional column tests. Two cyclic temperature tests show that, during the second cycle, the temperature close to the heat source of the soil column is lower than that during the first cycle and the temperature far away from the heat source is low, which reflects the influence of heating path. Correspondingly, the moisture content distribution during the second cycle is quite different from that during the first cycle. The higher the soil dry density is, the better the heat conduction is. The lower the dry density is, the more favorable the moisture migration is. The placement direction of the soil column and the set of temperature boundaries affect the moisture distribution of the soil column through the difference in the temperature, gravity, and solid matrix potentials. The temperature-driven liquid water movement effectively promotes the transfer of heavy metal contaminant in unsaturated soils; it is closely correlated with the convection of the heavy metal substances easily dissolved in liquid water. However, the transfer of heavy metal substances in unsaturated soil is not obvious without a thermal driving force. The test results for the different heavy metal ions indicate that the thermally induced transfer distance of the heavy metal pollutants with low adsorption properties (e.g., Cu2+) to soil particles is much larger than that of the heavy metal pollutants with high adsorption properties (e.g., Cd2+).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom