Unrestricted Face Recognition Algorithm Based on Transfer Learning on Self-Pickup Cabinet
Author(s) -
Zhixue Liang
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5510027
Subject(s) - computer science , artificial intelligence , facial recognition system , face (sociological concept) , transfer of learning , image (mathematics) , similarity (geometry) , pattern recognition (psychology) , transfer (computing) , three dimensional face recognition , computer vision , algorithm , face detection , social science , sociology , parallel computing
In the contactless delivery scenario, the self-pickup cabinet is an important terminal delivery device, and face recognition is one of the efficient ways to achieve contactless access express delivery. In order to effectively recognize face images under unrestricted environments, an unrestricted face recognition algorithm based on transfer learning is proposed in this study. First, the region extraction network of the faster RCNN algorithm is improved to improve the recognition speed of the algorithm. Then, the first transfer learning is applied between the large ImageNet dataset and the face image dataset under restricted conditions. The second transfer learning is applied between face image under restricted conditions and unrestricted face image datasets. Finally, the unrestricted face image is processed by the image enhancement algorithm to increase its similarity with the restricted face image, so that the second transfer learning can be carried out effectively. Experimental results show that the proposed algorithm has better recognition rate and recognition speed on the CASIA-WebFace dataset, FLW dataset, and MegaFace dataset.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom