z-logo
open-access-imgOpen Access
The Comparison of Performance between Contrast Source Inversion and Its Related Algorithms and Several Improved Methods
Author(s) -
Meng Wang,
Guizhen Lu
Publication year - 2021
Publication title -
international journal of antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.282
H-Index - 37
eISSN - 1687-5877
pISSN - 1687-5869
DOI - 10.1155/2021/5510010
Subject(s) - algorithm , computer science , convergence (economics) , rate of convergence , inversion (geology) , function (biology) , mathematical optimization , mathematics , key (lock) , paleontology , computer security , structural basin , evolutionary biology , economics , biology , economic growth
The contrast source inversion (CSI) is an effective method for solving microwave imaging problems which is widely utilized. The core of the CSI is to change the conventional inverse scattering problem into an optimization problem. The two items in the objective function describe the state error and data error, respectively. As it is all known, there is almost no complete performance comparison based on Fresnel data for the CSI and its related improved algorithms. In addition, the performance of the algorithm under different weights was not analyzed before and the convergence speed of original CSI is slow. Firstly, this paper compares the performance of traditional CSI and its improved algorithms from three aspects of qualitative imaging effect, convergence speed, and objective function value based on Fresnel data. Secondly, the influence of the state error and the data error under different weights on the convergence rate and the objective function value are studied. For the limitation of a slower convergence rate, the CSI with weights (W-CSI), the CSI with dynamic reduction factor (CSI-DRF), and its related algorithms, which can get better convergence rate compared with their relative original algorithms, are proposed. Eventually, the future research work is prospected.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom