Reversible Information of Encrypted Image Based on Feature Difference Detection and Wavelet Transform
Author(s) -
Yongsheng Ding,
Wei Yun-bo,
Zhang Shui-sheng,
Shihang Yu
Publication year - 2021
Publication title -
contrast media and molecular imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.714
H-Index - 50
eISSN - 1555-4317
pISSN - 1555-4309
DOI - 10.1155/2021/5483001
Subject(s) - watermark , digital watermarking , lossless compression , embedding , wavelet , artificial intelligence , wavelet transform , encryption , mathematics , computer vision , image (mathematics) , discrete wavelet transform , computer science , stationary wavelet transform , pattern recognition (psychology) , algorithm , data compression , operating system
Aiming at the shortcomings of the existing lossless digital watermarking algorithm based on frequency domain in reversibility and embedding capacity, this study proposes a lossless digital image watermarking algorithm based on fractional wavelet transform, which is used for large-capacity reversible information hiding of images. First, the image is transformed by LeGall5/3 fractional wavelet, and then, the watermark is embedded in the high-frequency subband by the histogram shift method. In order to obtain maximum embedding capacity and reduce image distortion, the methods of selecting embedding parameters and stopping parameters are proposed, respectively. At the same time, in order to prevent overflow and reduce additional information, a new method of generating position map is proposed. The experimental results show that Lena is the result of multilayer embedding based on the algorithm in this study. In order to better observe the distortion phenomenon and enlarge the image, the Lena test image is the watermark image obtained after two and three layers of embedding, and its embedding capacity can be 2.7 bpp. It is proved that wavelet transform is suitable for encrypted images to implement covert communication.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom