z-logo
open-access-imgOpen Access
An Adaptive Authenticated Model for Big Data Stream SAVI in SDN-Based Data Center Networks
Author(s) -
Qizhao Zhou,
Junqing Yu,
Dong Li
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/5451820
Subject(s) - computer science , network packet , computer network , spoofing attack , data stream , big data , real time computing , distributed computing , operating system , telecommunications
With the rapid development of data-driven and bandwidth-intensive applications in the Software Defined Networking (SDN) northbound interface, big data stream is dynamically generated with high growth rates in SDN-based data center networks. However, a significant issue faced in big data stream communication is how to verify its authenticity in an untrusted environment. The big data stream traffic has the characteristics of security sensitivity, data size randomness, and latency sensitivity, putting high strain on the SDN-based communication system during larger spoofing events in it. In addition, the SDN controller may be overloaded under big data stream verification conditions on account of the fast increase of bandwidth-intensive applications and quick response requirements. To solve these problems, we propose a two-phase adaptive authenticated model (TAAM) by introducing source address validation implementation- (SAVI-) based IP source address verification. The model realizes real-time data stream address validation and dynamically reduces the redundant verification process. A traffic adaptive SAVI that utilizes a robust localization method followed by the Sequential Probability Ratio Test (SPRT) has been proposed to ensure differentiated executions of the big data stream packets forwarding and the spoofing packets discarding. The TAAM model could filter out the unmatched packets with better packet forwarding efficiency and fundamental security characteristics. The experimental results demonstrate that spoofing attacks under big data streams can be directly mitigated by it. Compared with the latest methods, TAAM can achieve desirable network performance in terms of transmission quality, security guarantee, and response time. It drops 97% of the spoofing attack packets while consuming only 9% of the controller CPU utilization on average.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom