z-logo
open-access-imgOpen Access
Pretreatment with 6-Gingerol Ameliorates Sepsis-Induced Immune Dysfunction by Regulating the Cytokine Balance and Reducing Lymphocyte Apoptosis
Author(s) -
SeongA Ju,
Quang-Tam Nguyen,
ThuHa Thi Nguyen,
JaeHee Suh,
Won Gun An,
Zak Callaway,
Yeonsoo Joe,
HunTaeg Chung,
Byung-Sam Kim
Publication year - 2021
Publication title -
oxidative medicine and cellular longevity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 93
eISSN - 1942-0900
pISSN - 1942-0994
DOI - 10.1155/2021/5427153
Subject(s) - immune system , cytokine , apoptosis , immune dysfunction , sepsis , immunology , lymphocyte , medicine , pharmacology , biology , biochemistry
Sepsis is characterized by an initial net hyperinflammatory response, followed by a period of immunosuppression, termed immunoparalysis. During this immunosuppressive phase, patients may have difficulty eradicating invading pathogens and are susceptible to life-threatening secondary hospital-acquired infections. Due to progress in antimicrobial treatment and supportive care, most patients survive early sepsis. Mortality is more frequently attributed to subsequent secondary nosocomial infections and multiorgan system failure. 6-Gingerol is the major pharmacologically active component of ginger. Although it is known to exhibit a variety of biological activities, including anti-inflammation and antioxidation, the role of 6-gingerol in sepsis-induced immune dysfunction remains elusive. Thus, we investigated whether 6-gingerol improves septic host response to infections during sepsis. 6-Gingerol-treated mice showed significantly lower mortality in polymicrobial sepsis induced by cecal ligation and puncture LPS via enhanced bacterial clearance in the peritoneum, blood, and organs (liver, spleen, and kidney) and inhibited the production of TNF-α and IL-6 in TLR2 and/or TLR4-stimulated macrophages. In addition, we demonstrated that survival improvement of secondary infection following septic insult was associated with an initial response of enhanced neutrophil numbers and function at the infection site, reduced apoptosis of immune cells, and a shift from a T helper cell type 2 (Th2) to a T helper cell type 1 (Th1) cytokine balance in the hypoinflammation phase. Our overall findings suggest that 6-gingerol potentially restores sepsis-induced immune dysfunction by shifting the balance of Th1/Th2 and by regulating apoptosis of immune cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom