Automatic Breast Tumor Diagnosis in MRI Based on a Hybrid CNN and Feature-Based Method Using Improved Deer Hunting Optimization Algorithm
Author(s) -
Weitao Ha,
Zahra Vahedi
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/5396327
Subject(s) - feature (linguistics) , computer science , optimization algorithm , artificial intelligence , pattern recognition (psychology) , algorithm , mathematics , mathematical optimization , philosophy , linguistics
Breast cancer is an unusual mass of the breast texture. It begins with an abnormal change in cell structure. This disease may increase uncontrollably and affects neighboring textures. Early diagnosis of this cancer (abnormal cell changes) can help definitively treat it. Also, prevention of this cancer can help to decrease the high cost of medical caring for breast cancer patients. In recent years, the computer-aided technique is an important active field for automatic cancer detection. In this study, an automatic breast tumor diagnosis system is introduced. An improved Deer Hunting Optimization Algorithm (DHOA) is used as the optimization algorithm. The presented method utilized a hybrid feature-based technique and a new optimized convolutional neural network (CNN). Simulations are applied to the DCE-MRI dataset based on some performance indexes. The novel contribution of this paper is to apply the preprocessing stage to simplifying the classification. Besides, we used a new metaheuristic algorithm. Also, the feature extraction by Haralick texture and local binary pattern (LBP) is recommended. Due to the obtained results, the accuracy of this method is 98.89%, which represents the high potential and efficiency of this method.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom