Fault Detection and Identification for Nonlinear Process Based on Inertia-Based KEPCA and a New Combined Monitoring Index
Author(s) -
Loubna El Fattahi,
El Hassan Sbai
Publication year - 2021
Publication title -
journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 25
eISSN - 2090-0155
pISSN - 2090-0147
DOI - 10.1155/2021/5320241
Subject(s) - fault detection and isolation , nonlinear system , estimator , control limits , kernel principal component analysis , inertia , kernel (algebra) , computer science , entropy (arrow of time) , gaussian process , algorithm , process (computing) , artificial intelligence , mathematics , control theory (sociology) , kernel method , gaussian , support vector machine , statistics , physics , control (management) , classical mechanics , quantum mechanics , control chart , combinatorics , actuator , operating system
In the present study, we introduce a new approach for the nonlinear monitoring process based on kernel entropy principal component analysis (KEPCA) and the notion of inertia. KEPCA plays double roles. First, it reduces the data in the high-dimensional space. Second, it constructs the model. Before data reduction, KEPCA transforms input data into high-dimensional feature space based on a nonlinear kernel function and automatically determines the number of principal components (PCs) based on the computation of the inertia. The retained PCs express the maximum inertia entropy of data in the feature space. Then, we use the Parzen window estimator to compute the upper control limit (UCL) for inertia-based KEPCA instead of the Gaussian assumption. Our second contribution concerns a new combined index based on the monitoring indices T2 and SPE in order to simplify the detection task of the fault and prevent any confusion. The proposed approaches have been applied to process fault detection and diagnosis for the well-known benchmark Tennessee Eastman process (TE). Results were performing.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom