Random Target Localization for an Upper Limb Prosthesis
Author(s) -
Xinglei Zhang,
Binghui Fan,
Chuanjiang Wang,
Xiaolin Cheng,
Hongguang Feng,
Zhaohui Tian
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/5297043
Subject(s) - backpropagation , position (finance) , artificial neural network , kinematics , computer science , artificial intelligence , algorithm , computer vision , physics , finance , classical mechanics , economics
To achieve the purpose of accurately grasping a random target with the upper limb prosthesis, the acquisition of target localization information is especially important. For this reason, a novel type of random target localization algorithm is proposed. Firstly, an initial localization algorithm (ILA) that uses two 3D attitude sensors and a laser range sensor to detect the target attitude and distance is presented. Secondly, an error correction algorithm where a multipopulation genetic algorithm (MPGA) optimizes backpropagation neural network (BPNN) is utilized to improve the accuracy of ILA. Thirdly, a general regression neural network (GRNN) algorithm is proposed to calculate the joint angles, which are used to control the upper limb prosthetic gripper to move to the target position. Finally, the proposed algorithm is applied to the 5-DOF upper limb prosthesis, and the simulations and experiments are proved to demonstrate the validity of the proposed localization algorithm and inverse kinematics (IK) algorithm.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom