Machine-to-Machine Communication for Device Identification and Classification in Secure Telerobotics Surgery
Author(s) -
Meghana Lokhande,
Dipti D. Patil,
Lalit V. Patil,
Mohammad Shabaz
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/5287514
Subject(s) - computer science , identification (biology) , protocol (science) , robot , telerobotics , computer security , communications protocol , machine to machine , reliability (semiconductor) , artificial intelligence , secure communication , internet of things , embedded system , computer network , mobile robot , medicine , power (physics) , botany , alternative medicine , physics , pathology , quantum mechanics , biology , encryption
The capacity of machine objects to communicate autonomously is seen as the future of the Internet of Things (IoT), but machine-to-machine communication (M2M) is also gaining traction. In everyday life, security, transportation, industry, and healthcare all employ this paradigm. Smart devices have the ability to detect, handle, store, and analyze data, resulting in major network issues such as security and reliability. There are numerous vulnerabilities linked with IoT devices, according to security experts. Prior to performing any activities, it is necessary to identify and classify the device. Device identification and classification in M2M for secure telerobotic surgery are presented in this study. Telerobotics is an important aspect of the telemedicine industry. The major purpose is to provide remote medical care, which eliminates the requirement for both doctors and patients to be in the same location. This paper aims to propose a security and energy-efficient protocol for telerobotic surgeries, which is the primary concern at present. For secure telerobotic surgery, the author presents an Efficient Device type Detection and Classification (EDDC) protocol for device identification and classification in M2M communication. The periodic trust score is calculated using three factors from each sensor node. It demonstrates that the EDDC protocol is more effective and secure in detecting and categorizing rogue devices.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom