z-logo
open-access-imgOpen Access
Calculation of the Neutron Parameters for Accelerator-Driven Subcritical Reactors
Author(s) -
Tran Minh Tien,
Dung Tran Quoc
Publication year - 2021
Publication title -
science and technology of nuclear installations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.417
H-Index - 24
eISSN - 1687-6083
pISSN - 1687-6075
DOI - 10.1155/2021/5284580
Subject(s) - neutron , nuclear physics , neutron cross section , neutron flux , spallation , neutron source , materials science , beam (structure) , triga , nuclear engineering , neutron temperature , proton , coolant , physics , research reactor , engineering , optics
In this paper, the accelerator-driven subcritical reactor (ADSR) is simulated based on structure of the TRIGA-Mark II reactor. A proton beam is accelerated and interacts on the lead target. Two cases of using lead are considered here: firstly, solid lead is referred to as spallation neutron target and water as the coolant; secondly, molten lead is considered both as a target and as a coolant. The proton beam in the energy range from 115 MeV to 2000 MeV interacts with the lead to create neutrons. The neutron parameters as neutron yield Yn/p, neutron multiplication factor k, the radial and axial distributions of the neutron flux in the core have been calculated by using MCNPX program. The results show that the neutron yield increases as the energies of the proton beam increases. When using the lead target, the differences between the neutron yield are from 4.2% to 14.2% depending on the energies of the proton beam. The proportion of uranium in the mixtures should be around 24% to produce an effective neutron multiplier factor greater than 0.9. The neutron fluxes are much higher than the same calculations for the TRIGA-Mark II reactor model using tungsten target and light water coolant.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom