Deep Grid Scheduler for 5G NB-IoT Uplink Transmission
Author(s) -
Han Zhong,
Ruize Sun,
Fengcheng Mei,
Yong Chen,
Fan Jin,
Lei Ning
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/5263726
Subject(s) - computer science , internet of things , resource allocation , telecommunications link , distributed computing , computer network , smart grid , queueing theory , bandwidth (computing) , transmission (telecommunications) , telecommunications , computer security , ecology , biology
Since the birth of narrowband Internet of Things (NB-IoT), the Internet of Things (IoT) industry has made a considerable progress in the application for smart cities, smart manufacturing, and healthcare. Therefore, the number of UEs is increasing exponentially, which brings considerable pressure to the efficient resource allocation for the bandwidth and power constrained NB-IoT networks. In view of the conventional algorithms that cannot dynamically adjust resource allocation, resulting in a low resource utilization and prone to resource fragmentation, this paper proposes a double deep Q-network (DDQN)-based NB-IoT dynamic resource allocation algorithm. It first builds an NB-IoT environment model based on the real environment. Then, the DDQN algorithm interacts with the NB-IoT environment model to learn and optimize resource allocation strategies until it converges to the optimum. Finally, the simulation results show that the DDQN-based NB-IoT dynamic resource allocation algorithm is better than the traditional algorithm in the resource utilization, average transmission rate, and UE average queuing time.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom