z-logo
open-access-imgOpen Access
Rutting Prediction Model of Asphalt Mixture Based on the Triaxial Repeated Load Test
Author(s) -
Jie Ji,
Meng Chen,
Zhi Suo,
Jianming Wei,
Jiani Wang,
L. Chen
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/5238680
Subject(s) - rut , asphalt , rheology , geotechnical engineering , materials science , quadratic equation , asphalt concrete , residual , structural engineering , mathematics , geology , engineering , composite material , algorithm , geometry
This study establishes a more reasonable and effective rutting prediction model called the quadratic modified Burgers rheological model by considering dynamic loads. Use ABAQUS to simulate the rutting depths through the existing Burgers model and the quadratic modified model and compare with the measured values of the multitemperature and load rutting tests and triaxial repeated load tests. The real tests were conducted on four asphalt mixtures, including SK-90 asphalt mixture, styrene-butadiene-styrene (SBS) modified asphalt mixture, direct coal liquefaction residue (DCLR) modified asphalt mixture, and compound DCLR modified asphalt mixture. The results showed that the range of error ratio and residual sum of squares between simulated and measured rutting depth based on the two different models are 5–35%/5.0–8.74% and 3–15%/0.9–3.1%, respectively, which show that the quadratic modified Burgers rheological model has a more accurate prediction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom