Study on Soil Water and Suction Stress Characteristics for Unsaturated Clay Soil of Airport Engineering Based on Laboratory Tests
Author(s) -
Jun Feng,
Guangze Zhang
Publication year - 2021
Publication title -
geofluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.44
H-Index - 56
eISSN - 1468-8123
pISSN - 1468-8115
DOI - 10.1155/2021/5233045
Subject(s) - geotechnical engineering , consolidation (business) , suction , soil water , triaxial shear test , soil test , stress (linguistics) , soil mechanics , environmental science , soil science , mathematics , geology , materials science , engineering , shear (geology) , composite material , mechanical engineering , linguistics , philosophy , accounting , business
For the unsaturated soil in Feidong China, this study examined the suction stress characteristics based on the soil-water characteristic curve (SWCC), which was different from traditional research ideas. At the same time, the unsaturated consolidation device was adopted for SWCC tests, with consideration of the influence of yielding stress of soil, which was different from the traditional test approach of the soil-water characteristic curve. The results were estimated using the van Genuchten model, which was revealed that this is well-fit for the studied unsaturated soil, and the triaxial shear-strength tests were conducted with suction control. Then, the suction stress characteristic curve (SSCC) was analyzed, and SWCC-predicted data were compared with triaxial test-derived suction stress data. For the studied unsaturated soil, the deviatoric stress increased with the net inner stress p − u a at the same matric suction. At the same net inner pressure, the deviatoric stress increased with the matric suction, which verified the hardening activity of matric suction on the tested unsaturated soil strength. Besides, triaxial test-derived suction stress data greatly conformed to SWCC data-derived SSCC that was determined using identical parameters used in the SWCC model.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom