z-logo
open-access-imgOpen Access
The Antitriple Negative Breast cancer Efficacy of Spatholobus suberectus Dunn on ROS‐Induced Noncanonical Inflammasome Pyroptotic Pathway
Author(s) -
Feng Zhang,
Qingqing Liu,
Kumar Ganesan,
KeWu Zeng,
Jiangang Shen,
Gang Fang,
Xiaohe Luo,
Jianping Chen
Publication year - 2021
Publication title -
oxidative medicine and cellular longevity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 93
eISSN - 1942-0900
pISSN - 1942-0994
DOI - 10.1155/2021/5187569
Subject(s) - inflammasome , cancer research , medicine , chemistry , receptor
Breast cancer (BCa) is the leading cause of women's death worldwide; among them, triple-negative breast cancer (TNBC) is one of the most troublesome subtypes with easy recurrence and great aggressive properties. Spatholobus suberectus Dunn has been used in the clinic of Chinese society for hundreds of years. Shreds of evidence showed that Spatholobus suberectus Dunn has a favorable outcome in the management of cancer. However, the anti-TNBC efficacy of Spatholobus suberectus Dunn percolation extract (SSP) and its underlying mechanisms have not been fully elucidated. Hence, the present study is aimed at evaluating the anti-TNBC potential of SSP both in vitro and in vivo, through the cell viability, morphological analysis of MDA-MB-231, LDH release assay, ROS assay, and the tests of GSH aborted pyroptotic noninflammasome signaling pathway. Survival analysis using the KM Plotter and TNM plot database exhibited the inhibition of transcription levels of caspase-4 and 9 related to low relapse-free survival in patients with BCa. Based on the findings, SSP possesses anti-TNBC efficacy that relies on ROS-induced noncanonical inflammasome pyroptosis in cancer cells. In this study, our preclinical evidence is complementary to the preceding clinic of Chinese society; studies on the active principles of SPP remain underway in our laboratory.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom