z-logo
open-access-imgOpen Access
Computer Simulation of Water Flow Animation Based on Two-Dimensional Navier-Stokes Equations
Author(s) -
Rushi Cao,
Ruyun Cao
Publication year - 2021
Publication title -
advances in mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.283
H-Index - 23
eISSN - 1687-9139
pISSN - 1687-9120
DOI - 10.1155/2021/5157197
Subject(s) - computer science , animation , interactive skeleton driven simulation , computer animation , flow (mathematics) , fluid dynamics , computer graphics , stokes flow , computer graphics (images) , boundary value problem , computer simulation , computational science , simulation , computer facial animation , mechanics , mathematics , mathematical analysis , physics
Simulation of water flow animation is a significant and challenging subject in computer graphics. With the continuous development of computational fluid dynamics and computer graphics, many more effective simulation methods have been developed, and fluid animation simulation has developed rapidly. In order to obtain realistic flow animation, one of the key aspects is to simulate flow motion. Based on the two-dimensional Navier-Stokes equations, a mathematical model is established to solve the boundary conditions required by the physical flow field of water. The coordinate transformation formula is introduced to transform the irregular physical area into a regular square calculation area, and then, the specific expressions of the liberalized Navier-Stokes equation, continuity equation, pressure Poisson equation, and dimensionless boundary conditions are given. Using animation software to sequence graphics and images of all kinds of control and direct operation of the relevant instructions, through the computer technology to simulate the flow of animation, based on the stability of fluid simulation method and simulation efficiency, so as to make realistic flow animation. The results show that FluidsNet has considerable performance in accelerating large scene animation simulation on the basis of ensuring the rationality of prediction, and the motion of water wave is realistic. The application of computer successfully simulates water flow.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom