z-logo
open-access-imgOpen Access
Optimization of Water Microbial Concentration Monitoring System Based on Internet of Things
Author(s) -
Miaomiao Zheng,
Shanshan Zhang,
Yidan Zhang,
HU Bao-zhong
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/5154922
Subject(s) - schematic , computer science , the internet , wireless sensor network , environmental monitoring , data acquisition , wireless , embedded system , real time computing , telecommunications , world wide web , computer network , engineering , electrical engineering , environmental engineering , operating system
The Internet of Things is an emerging information industry. Applying the information collection, transmission, and processing technologies in the Internet of Things technology to environmental monitoring, environmental emergency, and other environmental protection supervision fields will greatly improve the speed and accuracy of environmental supervision and facilitate the scientific development of environmental protection. Through the Internet of Things, people can obtain a large amount of reliable real-time information, and it is not easy to be affected by time, place, and environment, while the wireless sensor network has the advantages of easy installation and low cost, so environmental monitoring through the Internet of Things is the future development trend. In this paper, in view of the current situation of water scarcity and serious water pollution in China, combined with the development trend and advantages of the Internet of Things (IoT), and based on the inadequacy of the existing microbial sensor data collection equipment, we propose a design scheme of microbial concentration monitoring system for waters based on IoT. The system is based on Zig Bee wireless sensor network to build a common data acquisition platform and design special hardware to carry out high-precision microbial sensor data acquisition in water and through the PC to complete the real-time measurement data storage, waveform display, and data processing. In this paper, the schematic diagram and PCB board design of the system hardware module NUC120 main control board, CC2530 RF board, Wi-Fi wireless communication module, and high-precision ADC acquisition module are completed and fabricated. Then, the four modules are combined to realize the development of the data aggregation node and data acquisition node of the dedicated Zig Bee wireless network hardware device.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom