z-logo
open-access-imgOpen Access
Edge Server Placement for Service Offloading in Internet of Things
Author(s) -
Ma Rong
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/5109163
Subject(s) - computer science , server , computer network , edge computing , enhanced data rates for gsm evolution , the internet , bandwidth (computing) , edge device , distributed computing , cloud computing , operating system , telecommunications
With the rapid development of the Internet of Things, a large number of smart devices are being connected to the Internet while the data generated by these devices have put unprecedented pressure on existing network bandwidth and service operations. Edge computing, as a new paradigm, places servers at the edge of the network, effectively relieving bandwidth pressure and reducing delay caused by long-distance transmission. However, considering the high cost of deploying edge servers, as well as the waste of resources caused by the placement of idle servers or the degradation of service quality caused by resource conflicts, the placement strategy of edge servers has become a research hot spot. To solve this problem, an edge server placement method orienting service offloading in IoT called EPMOSO is proposed. In this method, Genetic Algorithm and Particle Swarm Optimization are combined to obtain a set of edge server placements strategies, and Simple Additive Weighting Method is utilized to determine the most balanced edge server placement, which is measured by minimum delay and energy consumption while achieving the load balance of edge servers. Multiple experiments are carried out, and results show that EPMOSO fulfills the multiobjective optimization with an acceptable convergence speed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom