z-logo
open-access-imgOpen Access
Dynamics of the Exponential Population Growth System with Mixed Fractional Brownian Motion
Author(s) -
Weijun Ma,
Wei Liu,
Quanxin Zhu,
Kaibo Shi
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/5079147
Subject(s) - fractional brownian motion , exponential function , dynamics (music) , statistical physics , exponential growth , brownian motion , population , mathematics , physics , mathematical analysis , statistics , demography , sociology , acoustics
This paper examines the dynamics of the exponential population growth system with mixed fractional Brownian motion. First, we establish some useful lemmas that provide powerful tools for studying the stochastic differential equations with mixed fractional Brownian motion. We offer some explicit expressions and numerical characteristics such as mathematical expectation and variance of the solutions of the exponential population growth system with mixed fractional Brownian motion. Second, we propose two sufficient and necessary conditions for the almost sure exponential stability and the k th moment exponential stability of the solution of the constant coefficient exponential population growth system with mixed fractional Brownian motion. Furthermore, we conduct some large deviation analysis of this mixed fractional population growth system. To the best of the authors’ knowledge, this is the first paper to investigate how the Hurst index affects the exponential stability and large deviations in the biological population system. It is interesting that the phenomenon of large deviations always occurs for addressed system when 1 / 2 < H < 1 . Moreover, several numerical simulations are reported to show the effectiveness of the proposed approach.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom