[Retracted] A Novel Smart Healthcare Monitoring System Using Machine Learning and the Internet of Things
Author(s) -
Malik Bader Alazzam,
Fawaz Alassery,
Ahmed Almulihi
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/5078799
Subject(s) - internet of things , computer science , health care , the internet , world wide web , computer security , internet privacy , human–computer interaction , artificial intelligence , economics , economic growth
The Internet of Things (IoT) has enabled the invention of smart health monitoring systems. These health monitoring systems can track a person’s mental and physical wellness. Stress, anxiety, and hypertension are key causes of many physical and mental disorders. Age-related problems such as stress, anxiety, and hypertension necessitate specific attention in this setting. Stress, anxiety, and blood pressure monitoring can prevent long-term damage by detecting problems early. This will increase the quality of life and reduce caregiver stress and healthcare costs. Determine fresh technology solutions for real-time stress, anxiety, and blood pressure monitoring using discreet wearable sensors and machine learning approaches. This study created an automated artefact detection method for BP and PPG signals. It was proposed to automatically remove outlier points generated by movement artefacts from the blood pressure signal. Next, eleven features taken from the oscillometric waveform envelope were utilised to analyse the relationship between diastolic blood pressure (SBP) and systolic blood pressure (DBP). This paper validates a proposed computational method for estimating blood pressure. The proposed architecture leverages sophisticated regression to predict systolic and diastolic blood pressure values from PPG signal characteristics.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom