z-logo
open-access-imgOpen Access
Adaptive Chaotic Ant Colony Optimization for Energy Optimization in Smart Sensor Networks
Author(s) -
Wenxian Jia,
Menghan Liu,
Jie Zhou
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/5051863
Subject(s) - ant colony optimization algorithms , computer science , adaptability , wireless sensor network , chaotic , energy consumption , node (physics) , particle swarm optimization , local optimum , cluster analysis , ant colony , mathematical optimization , distributed computing , engineering , computer network , artificial intelligence , mathematics , algorithm , ecology , structural engineering , electrical engineering , biology
Smart sensor network has the characteristics of low cost, low power consumption, real time, strong adaptability, etc., and it has a wide range of application prospects in the agricultural field. However, the smart sensor node is limited by its own energy; it also faces many bottlenecks in agricultural applications. Therefore, balancing the energy consumption of nodes and extending the life of the network are important considerations in the design of efficient routing for smart sensor networks. Aiming at the problem of energy constraints, this paper proposes an intelligent sensor network clustering algorithm based on adaptive chaotic ant colony optimization (ACACO). ACACO introduces logical chaotic mapping to interfere with the pheromone on the initial path and uses the adaptive strategy to improve the transition probability formula. After selecting the best next hop node, the advancing ants are released to update the local pheromone, and the current pheromone content is adjusted by the chaos factor. When the ants determine the path, they release subsequent ants to update the global pheromone. The simulation results show that ACACO has obvious advantages over genetic algorithm (GA) and particle swarm optimization (PSO).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom