z-logo
open-access-imgOpen Access
Software Defect Prediction Based on Hybrid Swarm Intelligence and Deep Learning
Author(s) -
Zhen Li,
Tong Li,
Yumei Wu,
Liu Yang,
Hong Miao,
Dongsheng Wang
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/4997459
Subject(s) - computer science , particle swarm optimization , hyperparameter , swarm intelligence , artificial intelligence , swarm behaviour , multi swarm optimization , machine learning , software , autoencoder , population , metaheuristic , data mining , algorithm , artificial neural network , demography , sociology , programming language
In order to improve software quality and testing efficiency, this paper implements the prediction of software defects based on deep learning. According to the respective advantages and disadvantages of the particle swarm algorithm and the wolf swarm algorithm, the two algorithms are mixed to realize the complementary advantages of the algorithms. At the same time, the hybrid algorithm is used in the search of model hyperparameter optimization, the loss function of the model is used as the fitness function, and the collaborative search ability of the swarm intelligence population is used to find the global optimal solution in multiple local solution spaces. Through the analysis of the experimental results of six data sets, compared with the traditional hyperparameter optimization method and a single swarm intelligence algorithm, the model using the hybrid algorithm has higher and better indicators. And, under the processing of the autoencoder, the performance of the model has been further improved.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom