z-logo
open-access-imgOpen Access
Research on Global Dynamic Path Planning Method Based on Improved A Algorithm
Author(s) -
Chuanhu Niu,
Aijuan Li,
Xin Huang,
Wei Li,
Chuanyan Xu
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/4977041
Subject(s) - path (computing) , algorithm , heuristic , motion planning , obstacle avoidance , mathematics , computer science , mathematical optimization , artificial intelligence , mobile robot , robot , programming language
Aiming at the optimal path and planning efficiency of global path planning for intelligent driving, this paper proposes a global dynamic path planning method based on improved A ∗ algorithm. First, this method improves the heuristic function of the traditional A ∗ algorithm to improve the efficiency of global path planning. Second, this method uses a path optimization strategy to make the global path smoother. Third, this method is combined with the dynamic window method to improve the real-time performance of the dynamic obstacle avoidance of the intelligent vehicle. Finally, the global dynamic path planning method of the proposed improved A ∗ algorithm is verified through simulation experiments and real vehicle tests. In the simulation analysis, compared with the modified A ∗ algorithm and the traditional A ∗ algorithm, the method in this paper shortens the path distance by 2.5%∼3.0%, increases the efficiency by 10.3%∼13.6% and generates a smoother path. In the actual vehicle test, the vehicle can avoid dynamic obstacles in real time. Therefore, the method proposed in this paper can be applied on the intelligent vehicle platform. The path planning efficiency is high, and the dynamic obstacle avoidance is good in real time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom