Motion of Charged Spinning Particles in a Unified Field
Author(s) -
M. I. Wanas,
Mona M. Kamal
Publication year - 2021
Publication title -
advances in high energy physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.59
H-Index - 49
eISSN - 1687-7365
pISSN - 1687-7357
DOI - 10.1155/2021/4970469
Subject(s) - geodesic , physics , test particle , classical mechanics , spinning , lorentz transformation , gravitation , scalar field , motion (physics) , context (archaeology) , equations of motion , geometry , mathematical analysis , mathematics , mechanical engineering , paleontology , engineering , biology
Using a geometry wider than Riemannian one, the parameterized absolute parallelism (PAP) geometry, we derived a new curve containing two parameters. In the context of the geometrization philosophy, this new curve can be used as a trajectory of charged spinning test particle in any unified field theory constructed in the PAP space. We show that imposing certain conditions on the two parameters, the new curve can be reduced to a geodesic curve giving the motion of a scalar test particle or/and a modified geodesic giving the motion of neutral spinning test particle in a gravitational field. The new method used for derivation, the Bazanski method, shows a new feature in the new curve equation. This feature is that the equation contains the electromagnetic potential term together with the Lorentz term. We show the importance of this feature in physical applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom