Impact of Big Data Analysis on Nanosensors for Applied Sciences Using Neural Networks
Author(s) -
Shitharth Selvarajan,
Pratiksha Meshram,
Pravin R. Kshirsagar,
Hariprasath Manoharan,
Vineet Tirth,
Venkatesa Prabhu Sundramurthy
Publication year - 2021
Publication title -
journal of nanomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.463
H-Index - 66
eISSN - 1687-4129
pISSN - 1687-4110
DOI - 10.1155/2021/4927607
Subject(s) - nanosensor , computer science , big data , artificial neural network , machine learning , data mining , materials science , nanotechnology
In the current-generation wireless systems, there is a huge requirement on integrating big data which can able to predict the market trends of all application systems. Therefore, the proposed method emphasizes on the integration of nanosensors with big data analysis which will be used in healthcare applications. Also, safety precautions are considered when this nanosensor is integrated where depth and reflection of signals are also observed using different time samples. In addition, to analyze the effect of nanosensors, six fundamental scenarios that provide good impact on real-time applications are also deliberated. Moreover, for proving the adeptness of the proposed method, the results are equipped in both online and offline analyses for investigating error measurement, sensitivity, and permeability parameters. Since nanosensors are introduced, the efficiency of the projected technique is increased by implementing media access control (MAC) protocol with recurrent neural network (RNN). Further, after observing the simulation results, it is proved that the proposed method is more effective for an average percentile of 67% when compared to the existing methods.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom