Effect of Chemical Challenges on the Properties of Composite Resins
Author(s) -
Omar Geha,
Luciana Tiemi Inagaki,
Jaqueline Costa Favaro,
Alejandra Hortência Miranda González,
Ricardo Danil Guiraldo,
Murilo Baena Lopes,
Sandrine Bittencourt Berger
Publication year - 2021
Publication title -
international journal of dentistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 33
eISSN - 1687-8736
pISSN - 1687-8728
DOI - 10.1155/2021/4895846
Subject(s) - distilled water , indentation hardness , phosphoric acid , citric acid , surface roughness , materials science , composite number , nuclear chemistry , scanning electron microscope , alcohol , chemistry , composite material , metallurgy , chromatography , microstructure , organic chemistry
Objective. To evaluate the chemical degradation effect on microhardness and roughness of composite resins after aging. Materials and Methods. Specimens (n = 10) were used for Filtek Z350 XT (Z350), Filtek Bulk Fill (BULK), Micerium HRI (HRI), Micerium BIOFUNCION (BIO), and Vittra APS (VITTRA). Microhardness and roughness were performed before and after degradation with the followed solutions: citric acid, phosphoric acid, 75% alcohol, and distilled water. Samples were to a 180-day chemical cycling protocol. After degradation, one sample of each group was selected for scanning electron microscope evaluation. The data were analyzed with normal distribution (Kolmogorov–Smirnov) and similarities of variations for the Bartlett test. ANOVA (two-way) followed by Tukey’s test was performed considering treatment and composite resin P < 0.05 . Results. For microhardness and roughness, variations were noted to different solution and resin formulations. Z350 and HRI showed higher microhardness percentage loss, and it was more evident after storage in alcohol (−48.49 ± 20.16 and −25.02 ± 14.04, respectively) and citric acid (−65.05 ± 28.97 and 16.12 ± 8.35, respectively). For roughness, Z350 and VITTRA showed less delta values after alcohol storage (−0.047 ± 0.007 and −0.022 ± 0.009, respectively). HRI had the worst roughness for citric acid (−0.090 ± 0.025). All resins were not statistically different between each other in water and phosphoric acid. Conclusion. The formulations of restorative resin materials influenced in degree of surface degradation after 180 days of chemical degradation. Water was considered the solution that causes less degradation for microhardness and roughness evaluations. For microhardness, alcohol was considered the worst solution for Z350 and HRI. For superficial roughness, Z350 and VITTRA showed less degradation in alcohol and citric and phosphoric acid solutions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom