z-logo
open-access-imgOpen Access
Matching Cyber Security Ontologies through Genetic Algorithm-Based Ontology Alignment Technique
Author(s) -
Weiwei Lin,
Reiko Haga
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/4856265
Subject(s) - computer science , ontology alignment , ontology , semantic heterogeneity , domain (mathematical analysis) , ontology based data integration , matching (statistics) , information retrieval , process ontology , data mining , complement (music) , theoretical computer science , semantic web , mathematical analysis , philosophy , statistics , biochemistry , mathematics , chemistry , epistemology , complementation , gene , phenotype
Security ontology can be used to build a shared knowledge model for an application domain to overcome the data heterogeneity issue, but it suffers from its own heterogeneity issue. Finding identical entities in two ontologies, i.e., ontology alignment, is a solution. It is important to select an effective similarity measure (SM) to distinguish heterogeneous entities. However, due to the complex semantic relationships among concepts, no SM is ensured to be effective in all alignment tasks. The aggregation of SMs so that their advantages and disadvantages complement each other directly affects the quality of alignments. In this work, we formally define this problem, discuss its challenges, and present a problem-specific genetic algorithm (GA) to effectively address it. We experimentally test our approach on bibliographic tracks provided by OAEI and five pairs of security ontologies. The results show that GA can effectively address different heterogeneous ontology-alignment tasks and determine high-quality security ontology alignments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom