z-logo
open-access-imgOpen Access
A Regulatable Data Privacy Protection Scheme for Energy Transactions Based on Consortium Blockchain
Author(s) -
Yufeng Li,
Yuling Chen,
Tao Li,
Xiaojun Ren
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/4840253
Subject(s) - computer science , database transaction , computer security , distributed transaction , transparency (behavior) , information privacy , encryption , blockchain , transaction processing , security analysis , private information retrieval , database
In the blockchain-based energy transaction scenario, the decentralization and transparency of the ledger will cause the users’ transaction details to be disclosed to all participants. Attackers can use data mining algorithms to obtain and analyze users’ private data, which will lead to the disclosure of transaction information. Simultaneously, it is also necessary for regulatory authorities to implement effective supervision of private data. Therefore, we propose a supervisable energy transaction data privacy protection scheme, which aims to trade off the supervision of energy transaction data by the supervisory authority and the privacy protection of transaction data. First, the concealment of the transaction amount is realized by Pedersen commitment and Bulletproof range proof. Next, the combination of ElGamal encryption and zero-knowledge proof technology ensures the authenticity of audit tickets, which allows regulators to achieve reliable supervision of the transaction privacy data without opening the commitment. Finally, the multibase decomposition method is used to improve the decryption efficiency of the supervisor. Experiments and security analysis show that the scheme can well satisfy transaction privacy and auditability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom