z-logo
open-access-imgOpen Access
Simple Fabrication of Visible Light-Responsive Bi-BiOBr/BiPO4 Heterostructure with Enhanced Photocatalytic Activity
Author(s) -
Chunbei Wu,
Chuxin Zhou,
Yuanyuan Chen,
Zhigang Peng,
Jun Yang,
Yuanming Zhang
Publication year - 2021
Publication title -
journal of nanomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.463
H-Index - 66
eISSN - 1687-4129
pISSN - 1687-4110
DOI - 10.1155/2021/4835596
Subject(s) - photocatalysis , materials science , heterojunction , ethylene glycol , ternary operation , chemical engineering , degradation (telecommunications) , metal , visible spectrum , nanotechnology , photochemistry , optoelectronics , catalysis , organic chemistry , metallurgy , chemistry , computer science , engineering , programming language , telecommunications
A Bi-BiOBr/BiPO4 heterojunction structure was successfully synthesized via a two-step solvothermal method with ethylene glycol as a reducer. Little BiPO4 irregular polyhedrons and little metal Bi spherical nanoparticles were uniformly dispersed on the surface of BiOBr nanosheets with intimate contact and formed a heterojunction structure between BiPO4 and BiOBr. It was found that Bi-BiOBr/BiPO4 had a significant improvement in photocatalytic performance for RhB degradation compared to bare BiOBr and BiPO4. The photocatalytic degradation rate constant of 0.2-Bi/BiOBr/BiPO4 was 1.44 h-1, which was 3.8 times and 14.2 times more than that of bare BiOBr and BiPO4, respectively. This is attributed to the formation of a ternary heterojunction, which benefits the separation of photogenerated electron-hole pairs. Furthermore, with the introduction of metal Bi, the SPR effect of metal Bi can effectively improve the absorption ability of Bi-BiOBr/BiPO4 photocatalyst, resulting in enhanced photoactivity. In this work, the mechanism of photocatalytic degradation was studied by using the photochemical technique and the capture experiment of active species, and it was revealed that h+ and ⋅O2- played a major role in the photocatalytic process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom