Routing Optimization Algorithm of Spatial DTN Network Based on Multiattribute Decision
Author(s) -
Hua Liang,
Yang Yang,
Ziyan Wang
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/4830701
Subject(s) - computer science , routing table , computer network , multipath routing , distributed computing , node (physics) , delay tolerant networking , static routing , network architecture , destination sequenced distance vector routing , routing (electronic design automation) , routing protocol , link state routing protocol , optimized link state routing protocol , structural engineering , engineering
Delay or stop (DTN) tolerance space network is considered to be a technology that can trade with a limited or restricted field communication area. In the space DTN network architecture, routing is very important. This article is based on the best-in-class multiattribute decision-making DTN network routing optimization algorithm. The goal is to use the optimized DTN network routing algorithm multiattribute decision-making algorithm and conduct a more in-depth study on the field information mechanism multipath decision algorithm and network path. Aiming at the problems of long link delay and frequent link interruption of current deep-space communication characteristics, and solving the impact on communication caused by system performance degradation. This paper adopts the multiattribute decision-making model algorithm to construct simulation tests, introduces the DTN network architecture, and analyzes the four attributes of the multi-attribute decision-making link bandwidth, node data forwarding rate, link establishment delay, and network error rate. The experimental results show that, in the spatial information network, the high-speed movement of nodes and the highly dynamic nature of the network make the deep-space network topology unstable and long communication delay; the change of the link mode and switch connection in the network will cause the routing table to update. This routing update method requires the exchange of topology information between all networks; when the forwarding rates of adjacent nodes are 100%, 90%, 95%, and 70%, nodes can only perform routing independently when they meet. The decision attribute algorithm has obvious changes to the attributes of any node in the spatial DTN network. The most obvious is that the link establishment delay has reached the standard of 5 or more.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom