Mix Design of Recycled Coarse Aggregate Self-Compacting Concrete Based on Orthogonal Test and Analysis of Mercury Intrusion Porosimetry
Author(s) -
Songpu Gao,
Qing Liu,
Fengxia Han,
Yu Fu
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/4829673
Subject(s) - mercury intrusion porosimetry , materials science , porosity , porosimetry , composite material , fly ash , fractal dimension , aggregate (composite) , superplasticizer , intrusion , fractal , compressive strength , porous medium , mathematics , mathematical analysis , geochemistry , geology
The influence of four factors (water-binder ratio, recycled coarse aggregate replacement rate, fly ash substitution rate, and superplasticizer content) on the workabilities and mechanical properties of recycled coarse aggregate self-compacting concrete (RCASCC) was studied using the orthogonal test method. Based on the orthogonal test design and range analysis method of the fresh and hardened properties of RCASCC, the optimal mix is as follows: water-binder ratio of 0.269, recycled coarse aggregate replacement rate of 30%, fly ash substitution rate of 40%, and superplasticizer content of 0.50%. Then, the porosity and aperture size distribution of nine groups of RCASCC were tested by mercury intrusion porosimetry (MIP) at the microlevel. The macroscopic and microscopic relationship was established by combining the results of mechanical property tests and MIP. Fractal dimension D of the B.B. Mandelbrot model was used to study the fractal characteristics of pore volume of RCASCC. Results showed that porosity and strengths are negatively correlated, and the relative strength can be roughly judged according to the porosity. The pore structure of nine groups of RCASCC materials has evident fractal characteristics of irregular shape. The complex pore structure adversely affects strength.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom