z-logo
open-access-imgOpen Access
A Deep Learning Framework Based on Multisensor Fusion Information to Identify the Airplane Wake Vortex
Author(s) -
Yi Ai,
Yuanji Wang,
Weijun Pan,
Dingjie Wu
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/4819254
Subject(s) - wake , wake turbulence , airplane , lidar , vortex , radar , computer science , aerospace engineering , aviation , feature (linguistics) , doppler radar , artificial intelligence , remote sensing , meteorology , engineering , geology , physics , linguistics , philosophy
Along with the rapid improvement of the aviation industry, flight density also increases with the increase of flight demand, which directly leads to the increasingly prominent influence of wake vortex on flight safety and aviation control. In this paper, we propose a new joint framework—a deep learning framework—based on multisensor fusion information to address the detection and identification of wake vortices in the near-Earth phase. By setting multiple Doppler lidar in near-Earth flight areas at different airports, a large number of accurate wind field data are captured for wake vortex detection. Meanwhile, the airport surveillance radar is used to locate the wake vortex. In the deep learning framework, an end-to-end CNN-LSTM model has been employed to identify the airplane wake vortex from the data detected by Doppler lidar and the airport surveillance radar. The variables including the wind field matrix, positioning matrix, and the variance sequence are used as inputs to the CNN channel and LSTM channel. The identification and location information of the wake vortex in the wind field image will be output by the framework. Experiments show that the joint framework based on a multisensor possesses stronger ability to capture local feature and sequence feature than the traditional CNN or LSTM model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom