z-logo
open-access-imgOpen Access
Signal Modulation Identification Based on Deep Learning in FBMC/OQAM Systems
Author(s) -
Jing Chen,
Jianzhong Guo,
Xin Shan,
Dejin Kong
Publication year - 2021
Publication title -
mobile information systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.346
H-Index - 34
eISSN - 1875-905X
pISSN - 1574-017X
DOI - 10.1155/2021/4809699
Subject(s) - computer science , filter bank , artificial intelligence , deep learning , modulation (music) , interference (communication) , artificial neural network , pattern recognition (psychology) , convolutional neural network , channel (broadcasting) , telecommunications , philosophy , aesthetics
Signal modulation identification (SMI) has always been one of hot issues in filter-bank multicarrier with offset quadrature amplitude modulation (FBMC/OQAM), which is usually implemented by the machine learning-based feature extraction. However, it is difficult for conventional methods to extract the signal feature, resulting in a limited probability of correct classification (PCC). To tackle this problem, we put forward a novel SMI method based on deep learning to identify FBMC/OQAM signals in this paper. It is noted that the block repetition is employed in the FBMC/OQAM system to achieve the imaginary interference cancelation. In the proposed deep learning-based SMI technique, the in-phase and quadrature samples of FBMC/OQAM signals are trained by the convolutional neural network. Subsequently, the dropout layer is designed to prevent overfilling and improve the identification accuracy. To evaluate the proposed scheme, extensive experiments are conducted by employing datasets with different modulations. The results show that the proposed method can achieve better accuracy than conventional methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom