Classification of Date Fruits into Genetic Varieties Using Image Analysis
Author(s) -
Murat Köklü,
Ramazan Kursun,
Yavuz Selim Taşpınar,
İlkay Çınar
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/4793293
Subject(s) - artificial intelligence , pattern recognition (psychology) , artificial neural network , image (mathematics) , machine vision , image processing , type (biology) , mathematics , computer science , machine learning , biology , ecology
A great number of fruits are grown around the world, each of which has various types. The factors that determine the type of fruit are the external appearance features such as color, length, diameter, and shape. The external appearance of the fruits is a major determinant of the fruit type. Determining the variety of fruits by looking at their external appearance may necessitate expertise, which is time-consuming and requires great effort. The aim of this study is to classify the types of date fruit, that are, Barhee, Deglet Nour, Sukkary, Rotab Mozafati, Ruthana, Safawi, and Sagai by using three different machine learning methods. In accordance with this purpose, 898 images of seven different date fruit types were obtained via the computer vision system (CVS). Through image processing techniques, a total of 34 features, including morphological features, shape, and color, were extracted from these images. First, models were developed by using the logistic regression (LR) and artificial neural network (ANN) methods, which are among the machine learning methods. Performance results achieved with these methods are 91.0% and 92.2%, respectively. Then, with the stacking model created by combining these models, the performance result was increased to 92.8%. It has been concluded that machine learning methods can be applied successfully for the classification of date fruit types.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom