z-logo
open-access-imgOpen Access
Prediction and Analysis of Length of Stay Based on Nonlinear Weighted XGBoost Algorithm in Hospital
Author(s) -
Yong Chen
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/4714898
Subject(s) - weighting , nonlinear system , algorithm , heuristic , boosting (machine learning) , statistics , computer science , mathematics , mathematical optimization , artificial intelligence , medicine , physics , quantum mechanics , radiology
An improved nonlinear weighted extreme gradient boosting (XGBoost) technique is developed to forecast length of stay for patients with imbalance data. The algorithm first chooses an effective technique for fitting the duration of stay and determining the distribution law and then optimizes the negative log likelihood loss function using a heuristic nonlinear weighting method based on sample percentage. Theoretical and practical results reveal that, when compared to existing algorithms, the XGBoost method based on nonlinear weighting may achieve higher classification accuracy and better prediction performance, which is beneficial in treating more patients with fewer hospital beds.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom