z-logo
open-access-imgOpen Access
RNF12 Promotes Glioblastoma Malignant Proliferation via Destructing RB1 and Regulating MAPK Pathway
Author(s) -
Eryi Sun,
Ping Zhang
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/4711232
Subject(s) - ubiquitin ligase , mapk/erk pathway , cell growth , mdm2 , glioblastoma , ubiquitin , immunoprecipitation , cancer research , in vivo , signal transduction , phosphorylation , biology , microbiology and biotechnology , cell culture , biochemistry , genetics , gene
Background. RNF12 has been linked to a variety of biological activities, including the control of the MDM2/P53 pathway, although its additional functions remain unclear. RNF12 was discovered to be a new ubiquitin ligase (E3) for RB1, amongst the most frequently repressed proteins in cancer of human. Method. Cell Counting Kit-8 was used to detect the cell proliferation; coimmunoprecipitation was used to determine that RNF12 interacts with RB1. Xenograft studies were used to verify the results. Result. In vivo and in vitro RNF12 interacts with RB1 regardless of E3 ligase activity. The ubiquitination of RB1 by RNF12 had an effect on its stability. RNF12 inhibits the RB1 protein and stimulates the MAPK pathway, promoting the growth of GBMs. Conclusion. Our findings show that RNF12 may operate as a tumour promoter by modulating the cancerous proliferation of glioblastoma by controlling the activity of a new RNF12/RB1/MAPK pathway regulatory axis and that this regulatory axis might be a valuable diagnostic focus in glioblastoma.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom