Observed Shear-Relative Rainfall Asymmetries Associated with Landfalling Tropical Cyclones
Author(s) -
Xiang Wang,
Haiyan Jiang,
Xun Li,
Jun A. Zhang
Publication year - 2021
Publication title -
advances in meteorology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.482
H-Index - 32
eISSN - 1687-9317
pISSN - 1687-9309
DOI - 10.1155/2021/4676713
Subject(s) - tropical cyclone , climatology , landfall , wind shear , troposphere , wavenumber , geology , african easterly jet , amazon basin , vorticity , geography , atmospheric sciences , vortex , meteorology , oceanography , tropical wave , wind speed , amazon rainforest , physics , optics , ecology , biology
This study examines the shear-relative rainfall spatial distribution of tropical cyclones (TCs) during landfall based on the 19-year (1998–2016) TRMM satellite 3B42 rainfall estimate dataset and investigates the role of upper-tropospheric troughs on the rainfall intensity and distribution after TCs make a landfall over the six basins of Atlantic (ATL), eastern and central Pacific (EPA), northwestern Pacific (NWP), northern Indian Ocean (NIO), southern Indian Ocean (SIO), and South Pacific (SPA). The results show that the wavenumber 1 perturbation can contribute ∼ 50% of the total perturbation energy of total TC rainfall. Wavenumber 1 rainfall asymmetry presents the downshear-left maxima in the deep-layer vertical wind shear between 200 and 850 hPa for all the six basins prior to making a landfall. In general, wavenumber 1 rainfall tends to decrease less if there is an interaction between TCs and upper-level troughs located at the upstream of TCs over land. The maximum TC rain rate distributions tend to be located at the downshear-left (downshear) quadrant under the high (low)-potential vorticity conditions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom