z-logo
open-access-imgOpen Access
Deep Learning-Based Three-Dimensional Oral Conical Beam Computed Tomography for Diagnosis
Author(s) -
Yangdong Lin,
Miao He
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/4676316
Subject(s) - magnification , cone beam computed tomography , artificial intelligence , segmentation , computer science , deep learning , image segmentation , computer vision , radiation treatment planning , medicine , computed tomography , radiology , radiation therapy
In order to deeply study oral three-dimensional cone beam computed tomography (CBCT), the diagnosis of oral and facial surgical diseases based on deep learning was studied. The utility model related to a deep learning-based classification algorithm for oral neck and facial surgery diseases (deep diagnosis of oral and maxillofacial diseases, referred to as DDOM) is brought out; in this method, the DDOM algorithm proposed for patient classification, lesion segmentation, and tooth segmentation, respectively, can effectively process the three-dimensional oral CBCT data of patients and carry out patient-level classification. The segmentation results show that the proposed segmentation method can effectively segment the independent teeth in CBCT images, and the vertical magnification error of tooth CBCT images is clear. The average magnification rate was 7.4%. By correcting the equation of R value and CBCT image vertical magnification rate, the magnification error of tooth image length could be reduced from 7.4. According to the CBCT image length of teeth, the distance R from tooth center to FOV center, and the vertical magnification of CBCT image, the data closer to the real tooth size can be obtained, in which the magnification error is reduced to 1.0%. Therefore, it is proved that the 3D oral cone beam electronic computer based on deep learning can effectively assist doctors in three aspects: patient diagnosis, lesion localization, and surgical planning.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom