z-logo
open-access-imgOpen Access
On the Numerical Approximation of Three-Dimensional Time Fractional Convection-Diffusion Equations
Author(s) -
Kamran Kamran,
Raheel Kamal,
Gul Rahmat,
Kamal Shah
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/4640467
Subject(s) - laplace transform , mathematics , basis function , inverse laplace transform , polynomial basis , mathematical analysis , radial basis function , laplace transform applied to differential equations , two sided laplace transform , fourier transform , computer science , fourier analysis , machine learning , artificial neural network , fractional fourier transform
In this paper, we present an efficient method for the numerical investigation of three-dimensional non-integer-order convection-diffusion equation (CDE) based on radial basis functions (RBFs) in localized form and Laplace transform (LT). In our numerical scheme, first we transform the given problem into Laplace space using Laplace transform. Then, the local radial basis function (LRBF) method is employed to approximate the solution of the transformed problem. Finally, we represent the solution as an integral along a smooth curve in the complex left half plane. The integral is then evaluated to high accuracy by a quadrature rule. The Laplace transform is used to avoid the classical time marching procedure. The radial basis functions are important tools for scattered data interpolation and for solving partial differential equations (PDEs) of integer and non-integer order. The LRBF and global radial basis function (GRBF) are used to produce sparse collocation matrices which resolve the issue of the sensitivity of shape parameter and ill conditioning of system matrices and reduce the computational cost. The application of Laplace transformation often leads to the solution in complex plane which cannot be generally inverted. In this work, improved Talbot’s method is utilized which is an efficient method for the numerical inversion of Laplace transform. The stability and convergence of the method are discussed. Two test problems are considered to validate the numerical scheme. The numerical results highlight the efficiency and accuracy of the proposed method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom