Cartesian Products of Some Regular Graphs Admitting Antimagic Labeling for Arbitrary Sets of Real Numbers
Author(s) -
Yi-Wu Chang,
Shan-Pang Liu
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/4627151
Subject(s) - mathematics , graph , combinatorics , discrete mathematics
An edge labeling of graph G with labels in A is an injection from E G to A , where E G is the edge set of G , and A is a subset of ℝ . A graph G is called ℝ -antimagic if for each subset A of ℝ with A = E G , there is an edge labeling with labels in A such that the sums of the labels assigned to edges incident to distinct vertices are different. The main result of this paper is that the Cartesian products of complete graphs (except K 1 ) and cycles are ℝ -antimagic.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom