z-logo
open-access-imgOpen Access
Enhanced Oil Recovery by Cyclic Injection of Wettability Alteration Agent for Tight Reservoirs
Author(s) -
Zhijie Wei,
Yuyang Liu,
Xiaodong Kang
Publication year - 2021
Publication title -
geofluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.44
H-Index - 56
eISSN - 1468-8123
pISSN - 1468-8115
DOI - 10.1155/2021/4533585
Subject(s) - imbibition , wetting , petroleum engineering , pulmonary surfactant , capillary pressure , tight oil , materials science , relative permeability , enhanced oil recovery , saturation (graph theory) , viscosity , permeability (electromagnetism) , oil in place , residual oil , viscous fingering , porous medium , chemical engineering , composite material , geology , porosity , oil shale , chemistry , petroleum , engineering , mathematics , membrane , biology , paleontology , biochemistry , germination , botany , combinatorics
Low primary recovery factor and rapid production decline necessitates the proposal of enhanced oil recovery methods to mobilize the remaining oil resource of tight reservoirs, especially for oil-wet ones, and wettability alteration by injecting a chemical agent such as a surfactant is a promising option. A discrete-fracture-network-based mathematical model is developed with consideration of the displacement mechanisms and complicated physical-chemical phenomena during EOR by wettability alteration, and this model numerically solved by the fully implicit method. Simulation cases are conducted to investigate the production performance and key factors of cyclic injection of a surfactant. Cyclic injection can significantly improve the production of oil-wet tight reservoirs, and the ultimate recovery factor can be increased by 10 percent. The reason is that a surfactant can alter the wettability of a reservoir from oil wet to medium or even water wet, which triggers spontaneous imbibition and favors oil movement from a matrix into a fracture. Better EOR results can be achieved with decreasing oil viscosity, increasing matrix permeability, or decreasing fracture spacing. Cyclic surfactant injection is applicable to reservoirs with an oil viscosity of less than 7 mPa·s, a matrix permeability bigger than 0.01 mD, or a fracture spacing smaller than 150 m. It is favorable for the wettability alteration method by maintaining capillary pressure and reducing residual oil saturation as much as possible.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom