SAI-YOLO: A Lightweight Network for Real-Time Detection of Driver Mask-Wearing Specification on Resource-Constrained Devices
Author(s) -
Zuopeng Zhao,
Kai Hao,
Xiaoping Ma,
Xiaofeng Liu,
Tianci Zheng,
Junjie Xu,
Shuya Cui
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/4529107
Subject(s) - computer science , block (permutation group theory) , real time computing , resource (disambiguation) , convolutional neural network , function (biology) , feature (linguistics) , artificial intelligence , pattern recognition (psychology) , simulation , mathematics , computer network , linguistics , philosophy , geometry , evolutionary biology , biology
Frequent occurrence and long-term existence of respiratory diseases such as COVID-19 and influenza require bus drivers to wear masks correctly during driving. To quickly detect whether the mask is worn correctly on resource-constrained devices, a lightweight target detection network SAI-YOLO is proposed. Based on YOLOv4-Tiny, the network incorporates the Inception V3 structure, replaces two CSPBlock modules with the RES-SEBlock modules to reduce the number of parameters and computational difficulty, and adds a convolutional block attention module and a squeeze-and-excitation module to extract key feature information. Moreover, a modified ReLU (M-ReLU) activation function is introduced to replace the original Leaky_ReLU function. The experimental results show that SAI-YOLO reduces the number of network parameters and calculation difficulty and improves the detection speed of the network while maintaining certain recognition accuracy. The mean average precision (mAP) for face-mask-wearing detection reaches 86% and the average precision (AP) for mask-wearing normative detection reaches 88%. In the resource-constrained device Raspberry Pi 4B, the average detection time after acceleration is 197 ms, which meets the actual application requirements.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom