Network Pharmacology-Based Prediction of Bioactive Compounds and Potential Targets of Wenjing Decoction for Treatment of Endometriosis
Author(s) -
Yunan Liu,
Hu Xiaojing,
Bei Liu,
Yu-jie Shang,
Wenting Xu,
Huifang Zhou
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/4521843
Subject(s) - kegg , endometriosis , pharmacology , signal transduction , medicine , computational biology , bioinformatics , biology , transcriptome , gene , gene expression , biochemistry
Endometriosis is a chronic estrogen-dependent inflammatory disorder that negatively affects the quality of life in women. The Wenjing decoction (WJD) is a traditional Chinese medicine that has been shown to have a therapeutic effect on endometriosis. Our study systematically explored the mechanism of WJD against endometriosis using a network pharmacology approach. Potentially bioactive compounds of WJD and their possible targets were retrieved from the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform. The protein-protein interaction network and herbs-compounds-genes multinetwork were constructed using Cytoscape for visualization. Subsequently, the signaling pathways of common targets were retrieved from the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and molecular docking was performed using PyRx software. In total, 48 common targets were screened, such as IL6 and ESR1, which were related to inflammation and the endocrine system. The top five bioactive compounds were quercetin, kaempferol, wogonin, beta-sitosterol, and stigmasterol. KEGG enrichment analysis revealed 65 pathways containing inflammatory- and endocrine-related signaling pathways, such as the “TNF signaling pathway” and the “estrogen signaling pathway.” Taken together, the results of our network pharmacology analysis predicted that certain active ingredients of WJD might treat endometriosis by regulating inflammation and/or endocrine, which provided references for further understanding and exploration of WJD on endometriosis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom