z-logo
open-access-imgOpen Access
Intelligent Tourism Personalized Recommendation Based on Multi-Fusion of Clustering Algorithms
Author(s) -
Hongyan Liang
Publication year - 2021
Publication title -
advances in multimedia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.278
H-Index - 17
eISSN - 1687-5699
pISSN - 1687-5680
DOI - 10.1155/2021/4517973
Subject(s) - computer science , tourism , recommender system , ontology , cluster analysis , big data , data mining , data science , association rule learning , information retrieval , machine learning , philosophy , epistemology , political science , law
Actual tourism mining models are often used to discover potential information in documents, but tourism models without human knowledge often produce unexplainable topics. This paper combines big data technology to build a personalized recommendation system for smart tourism, model the contextual information usage ontology under the tourism information system, and give the association between various ontologies. Then, this paper uses a matrix to describe each discrete attribute and interval attribute and uses a vector to model the user’s preferences. In addition, this paper constructs an intelligent recommendation system based on the actual needs of travel recommendation and verifies the system in combination with experimental research. Through experimental analysis, it can be known that the intelligent tourism personalized recommendation system based on big data technology proposed in this paper has a high practical effect.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom