Hyperspectral Image Denoising Based on Nonconvex Low-Rank Tensor Approximation and lp Norm Regularization
Author(s) -
Bo Li,
Xuegang Luo,
Junrui Lv
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/4500957
Subject(s) - hyperspectral imaging , matrix norm , mathematics , regularization (linguistics) , noise reduction , norm (philosophy) , algorithm , mathematical optimization , artificial intelligence , pattern recognition (psychology) , computer science , eigenvalues and eigenvectors , physics , quantum mechanics , political science , law
A new nonconvex smooth rank approximation model is proposed to deal with HSI mixed noise in this paper. The low-rank matrix with Laplace function regularization is used to approximate the nuclear norm, and its performance is superior to the nuclear norm regularization. A new phase congruency lp norm model is proposed to constrain the spatial structure information of hyperspectral images, to solve the phenomenon of “artificial artifact” in the process of hyperspectral image denoising. This model not only makes use of the low-rank characteristic of the hyperspectral image accurately, but also combines the structural information of all bands and the local information of the neighborhood, and then based on the Alternating Direction Method of Multipliers (ADMM), an optimization method for solving the model is proposed. The results of simulation and real data experiments show that the proposed method is more effective than the competcing state-of-the-art denoising methods.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom